STEREOSPECIFIC PHENYLATION OF ALKENYLSILANES WITH PHENYLPALLADIUM ACETATE

- Kiyoshi Kikukawa,* Kazutoshi Ikenaga, Fumio Wada, and Tsutomu Matsuda Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812, Japan
- Abstract: (E)- and (Z)-RCH=CHSiMe₃(R=Ph, n-C₆H₁₃, CH₃OCH₂) reacted stereospecifically with Ph-Pd-OAc to give RCH=C(Ph)SiMe₃ and R(Ph)C=CHSiMe₃ with inversion of the starting geometry with respect to R and Me₃Si groups.

Alkenylsilanes are known to react regio- and stereospecifically with a wide range of electrophiles.¹ Palladium(II) salts reacted with (E)-<u>la</u> or (E)-PhCH=CHSiF₅²⁻ to give (E)-PhCH=CH-Pd-X as a key intermediate with retention of their geometry.²,³ Unfortunately, the corresponding (Z)-isomers were not investigated in those reactions. Recently we reported non-regio- and non-stereospecific aryldesilylation of (E)- and (Z)-<u>la</u> by $[Ar-Pd]^+BF_4^-$ generated from ArN_2BF_4 and Pd(0) (dba)₂ catalytically(eq. 1).⁴

PhCH=CH
$$\sim$$
 SiMe₃ + [Ar-Pd]⁺BF₄ \longrightarrow (E)-PhCH=CHAr + Ph(Ar)C=CH₂ (1)
1a 4a 5a

We now report stereospecific phenylation of alkenylsilanes((E) - and (Z) - <u>la-c</u>) with Ph-Pd-OAc generated *in situ* from various sources, i.e., catalytically from the combination of PhN(NO)COCH₃ and Pd(0)(dba)₂(eq. 2),⁵ or by stoichiometric reaction of Pd(II)(OAc)₂ with SbPh₃ or PPh₃(eq. 3).^{6,7}

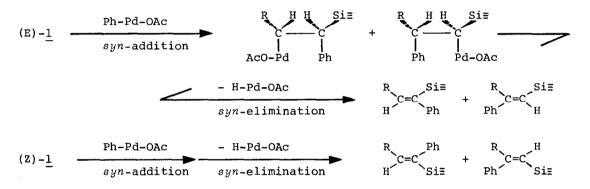
$$PhN(NO)COCH_{3} \longrightarrow PhN_{2}OAc \longrightarrow PhO_{2}OAc \qquad (2)$$

 $MPh_{3}(M=Sb \text{ or } P) + Pd(II)(OAc)_{2} \longrightarrow Ph-Pd-OAc + MPh_{2}(OAc)$ (3)

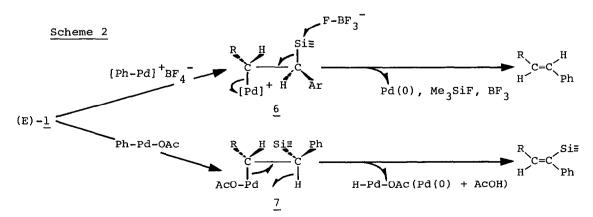
In contrast to the case with $[Ph-Pd]^+BF_4^-$, the reaction with Ph-Pd-OAc produced phenylated alkenylsilanes(<u>2a-c</u> and <u>3a-c</u>) stereospecifically as main products(eq. 4 and Table I). The geometry of the starting silanes was inverted in the products with respect to R and Me₃Si groups. The method of

5790

generation of Ph-Pd-OAc did not affect the feature of the phenylation. The stereochemistry can be easily explained in terms of *syn*-addition of Ph-Pd-OAc and *syn*-elimination of H-Pd-OAc as in the Heck arylation(Scheme 1, $-SiMe_3$ group is abbreviated as $-Si\Xi$ in this and the following schemes).⁸


$$RCH=CH \sim SiMe_{3} + Ph-Pd-OAc \longrightarrow RCH=C(Ph) \sim SiMe_{3} + R(Ph)C=CH \sim SiMe_{3}$$

$$\frac{1a-c}{2a-c} \qquad \frac{3a-c}{2a-c}$$

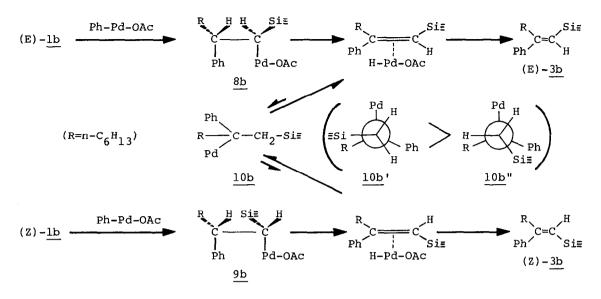

$$(R=Ph(a), n-C_{6}H_{13}(b), CH_{3}OCH_{2}(c)) + RCH=CH \sim Ph + R(Ph)C=CH_{2} \qquad (4)$$

$$\frac{4a-c}{2a-c} \qquad \frac{5a-c}{2a-c}$$

Scheme 1

The marked difference between the reactions with $[Ph-Pd]^+BF_4^-$ and Ph-Pd-OAc can be accounted for by the difference in elimination pathway from the adducts formed by *syn*-addition of Ph-Pd species(Scheme 2). In the adduct <u>6</u>, the cationic nature of palladium at β -carbon and the presence of BF_4^- may facilitate the elimination of Me₃Si group.⁴ On the contrary, the more tight coordination of OAc⁻ to palladium in the adduct <u>7</u> may promote the elimination of H-Pd-OAc.

<u>1</u> ^{<i>a</i>}	Source of Ph-Pd-OAc ^b		Products(% ratio) ^d			Regioselectivity	
			<u>2</u> (E/Z)	<u>3(E/Z)</u>	4(E/Z)	5	l-Ph/2-Ph
(E)-la	A	69	42 (~1/99)	33(-)	12(83/17)	13	54/46
(Z)- <u>la</u>	A	67	66 (~99/1)	27(–)	6 (~99/1)	1	72/28
(E)-lb	А	(78)	6(0/100)	62(95/5)	0	32	6/94
"	в	73	5(0/100)	60(98/2)	0	35	5/95
11	с	46	3(0/100)	75(97/3)	0	22	3/97
(Z)- <u>lb</u>	А	(56)	44(86/14)	44(36/64)	2	10	46/54
17	В	65	35(94/6)	57(30/70)	0	8	35/65
и	С	34	43(86/14)	39(44/56)	0	18	43/57
(E)- <u>lc</u>	А	(55)	10(20/80)	88(7/93)	0	2	10/90
$(Z) - \underline{lc}$	A	(64)	45(87/13)	52(88/12)	2	1	47/53


Table I. Phenylation of Alkenylsilanes with Phenylpalladium Acetate(eq. 4)

^{*a*} Isomeric purity of the starting alkenylsilanes was 99.9% or more except for $(Z) - \underline{la}(96.0\%)$ and $(E) - \underline{lc}(99.5\%)$. ^{*b*} Ph-Pd-OAc was prepared *in situ* from the following sources, A: PhN(NO)COCH₃(1.0 mmol), Pd(0)(dba)₂(0.2 mmol) and an alkenylsilane(1.5 mmol) in CH₃CN(5 ml) at 40 °C for 2 h, B: Ph₃Sb(0.5 mmol), Pd(OAc)₂(0.5 mmol) and an alkenylsilane(1.0 mmol) in CH₃CN(4 ml) at 25 °C for 2 h, and C: Ph₃P(0.4 mmol), Pd(OAc)₂(0.5 mmol) and an alkenylsilane(1.0 mmol) in CH₃CN(4 ml) at 40 °C for 2 h. ^{*c*} GLC yields based on PhN(NO)COCH₃(method A) or on Pd(OAc)₂(methods B and C). Values in the parenthesis are isolated yields. ^{*d*} Determined by GLC.

The poor stereospecificity of <u>3b</u> from (Z)-<u>1b</u> might be explained in terms of the isomerization of <u>9b</u> through the elimination and re-addition of H-Pd-OAc (Scheme 3). The stability of the two conformers of the adduct <u>10b</u> may be determined by the relative bulkiness of $n-C_6H_{13}$ and $Ph(Ph>n-C_6H_{13})$. The more stable conformer, <u>10b'</u>, produces (E)-<u>3b</u> by H-Pd-OAc elimination. Thus, the reaction of (Z)-<u>1b</u> gives (E)-<u>3b</u> along with (Z)-<u>3b</u>, whereas the product from (E)-<u>1b</u> is little contaminated by (Z)-<u>3b</u>. Since the product compositions listed in Table I proved to be little effected by the reaction time under the present reaction conditions except for the very slow desilylation of <u>3</u> to <u>5</u>, isomerization of the products once formed did not explain the behavior of (Z)-<u>1b</u>.

The regiochemistry of the arylation depends on the substituents and the geometry of <u>1</u>. The electronic and steric factors of substituents on olefins affect the orientation of the addition of Ar-Pd-X. The aryl group of Ar-Pd-X usually binds to the carbon atom possessing less bulky and more electron-donating group.⁸ The order of electron donating effect of 2-substituents on <u>1</u>($n-C_6H_{13} > CH_3OCH_2 > Ph$) and the bulkiness(Ph > $n-C_6H_{13} \simeq CH_3OCH_2$) easily accounts

Scheme 3

for the order of regioselectivity for 2-phenylation in the substrates of same geometry, i.e., $\underline{lb} \geq \underline{lc} > \underline{la}$. At present, there is no clear-cut explanation for the remarkable difference in the regioselectivity between the (E)- and (Z)- substrates. The steric factor of the substituents on \underline{l} seems to be a principal reason for the difference. Usually the steric effect works more effect-ively in (E)-isomers than (Z)-isomers in the coordination of olefins to palladium(II).⁹ Since Me₃Si group is the most bulky substituent in \underline{l} , its steric effect giving 2-phenylated products may play effectively in (E)- $\underline{la-c}$ than (Z)- $\underline{la-c}$.

References

- T. H. Chan and I. Fleming, Synthesis, 761 (1979); E. W. Colvin, "Silicon in Organic Synthesis", Butterworth, London, 1981, p 44; W. P. Weber, "Silicon Reagents for Organic Synthesis", Springer-Verlag, Berlin, 1983, p 79.
- J. Yoshida, K. Tamao, H. Yamamoto, R. Kakui, T. Uchida, and M. Kumada, Organometal., 1, 542 (1982).
- 3. W. P. Weber, R. R. Flex, A. K. Willard, and K. W. Koenig, Tetrahedron Lett., 4701 (1971).
- 4. K. Kikukawa, K. Ikenaga, F. Wada, and T. Matsuda, Chem. Lett., 1337 (1983).
- 5. K. Kikukawa, M. Naritomi, G-X. He, F. Wada, and T. Matsuda, submitted to J. Org. Chem.
- T. Kawamura, K. Kikukawa, M. Takagi, and T. Matsuda, Bull. Chem. Soc. Jpn., 50, 2021 (1977).
- 7. K. Kikukawa and T. Matsuda, J. Organometal. Chem., 235, 243 (1982).
- 8. R. F. Heck, Acc. Chem. Res., 12, 146 (1979).
- 9. P. M. Henry, J. Am. Chem. Soc., <u>88</u>, 1595 (1966). (Received in Japan 29 August 1984)